
The Levenberg-Marquardt Algorithm

Ananth Ranganathan

8th June 2004

1 Introduction

The Levenberg-Marquardt (LM) algorithm is the most widely used optimization algorithm. It
outperforms simple gradient descent and other conjugate gradient methods in a wide variety of
problems. This document aims to provide an intuitive explanation for this algorithm. The LM
algorithm is first shown to be a blend of vanilla gradient descent and Gauss-Newton iteration.
Subsequently, another perspective on the algorithm is provided by considering it as a trust-region
method.

2 The Problem

The problem for which the LM algorithm provides a solution is called Nonlinear Least Squares
Minimization. This implies that the function to be minimized is of the following special form :

f (x) =
1
2

m

∑
j=1

r2
j (x)

where x = (x1,x2, . . . ,xn) is a vector, and each r j is a function from ℜn to ℜ. The r j are referred to
as a residuals and it is assumed that m ≥ n.

To make matters easier, f is represented as a residual vector r : ℜn → ℜm defined by

r (x) = (r1 (x) ,r2 (x) , · · · ,rm (x))

Now, f can be rewritten as f (x) = 1
2 ‖ r (x) ‖2. The derivatives of f can be written using the

Jacobian matrix J of r w.r.t x defined as J(x) =
∂ r j

∂xi
, 1 ≤ j ≤ m, 1 ≤ i ≤ n.

Let us first consider the linear case where every ri function is linear. Here, the Jacobian is
constant and we can represent r as a hyperplane through space, so that f is given by the quadratic
f (x) = 1

2 ‖Jx+ r(0)‖2. We also get ∇ f (x) = JT (Jx + r) and ∇2 f (x) = JT J. Solving for the min-
imum by setting ∇ f (x) = 0 , we obtain xmin = −(JT J)−1JT r, which is the solution to the set of
normal equations.

1



Returning to the general, non-linear case, we have

∇ f (x) =
m

∑
j=1

r j (x)∇r j (x) = J (x)T r (x) (1)

∇2 f (x) = J (x)T J (x)+
m

∑
j=1

r j (x)∇2r j (x) (2)

The distinctive property of least-squares problems is that given the Jacobian matrix J, we can
essentially get the Hessian (∇2 f (x)) for free if it is possible to approximate the r js by linear
functions (∇2r j (x) are small) or the residuals (r j (x)) themselves are small. The Hessian in this
case simply becomes

∇2 f (x) = J (x)T J (x) (3)

which is the same as for the linear case.
The common approximation used here is one of near-linearity of the ris near the solution so

that ∇2r j (x) are small. It is also important to note that (3) is only valid if the residuals are small.
Large residual problems cannot be solved using the quadratic approximation, and consequently,
the performance of the algorithms presented in this document is poor in such cases.

3 LM as a blend of Gradient descent and Gauss-Newton itera-
tion

Vanilla gradient descent is the simplest, most intuitive technique to find minima in a function.
Parameter updation is performed by adding the negative of the scaled gradient at each step, i.e.

xi+1 = xi −λ∇ f (4)

Simple gradient descent suffers from various convergence problems. Logically, we would like
to take large steps down the gradient at locations where the gradient is small (the slope is gentle)
and conversely, take small steps when the gradient is large, so as not to rattle out of the minima.
With the above update rule, we do just the opposite of this. Another issue is that the curvature of
the error surface may not be the same in all directions. For example, if there is a long and narrow
valley in the error surface, the component of the gradient in the direction that points along the base
of the valley is very small while the component along the valley walls is quite large. This results in
motion more in the direction of the walls even though we have to move a long distance along the
base and a small distance along the walls.

This situation can be improved upon by using curvature as well as gradient information, namely
second derivatives. One way to do this is to use Newton’s method to solve the equation ∇ f (x) = 0.
Expanding the gradient of f using a Taylor series around the current state x0, we get

∇ f (x) = ∇ f (x0)+(x− x0)
T ∇2 f (x0)+higher order terms of (x− x0) (5)

If we neglect the higher order terms (assuming f to be quadratic around x0), and solve for the
minimum x by setting the left hand side of (5) to 0, we get the update rule for Newton’s method -

xi+1 = xi −
(

∇2 f (xi)
)−1 ∇ f (xi) (6)

2



where x0has been replaced by xi and x by xi+1.
Since Newton’s method implicitly uses a quadratic assumption on f (arising from the neglect

of higher order terms in a Taylor series expansion of f ) , the Hessian need not be evaluated exactly.
Rather the approximation of (3) can be used. The main advantage of this technique is rapid con-
vergence. However, the rate of convergence is sensitive to the starting location (or more precisely,
the linearity around the starting location).

It can be seen that simple gradient descent and Gauss-Newton iteration are complementary in
the advantages they provide. Levenberg proposed an algorithm based on this observation, whose
update rule is a blend of the above mentioned algorithms and is given as

xi+1 = xi − (H +λ I)−1 ∇ f (xi) (7)

where H is the Hessian matrix evaluated at xi. This update rule is used as follows. If the error
goes down following an update, it implies that our quadratic assumption on f (x) is working and
we reduce λ (usually by a factor of 10) to reduce the influence of gradient descent. On the other
hand, if the error goes up, we would like to follow the gradient more and so λ is increased by the
same factor. The Levenberg algorithm is thus -

1. Do an update as directed by the rule above.

2. Evaluate the error at the new parameter vector.

3. If the error has increased as a result the update, then retract the step (i.e. reset the weights to
their previous values) and increase λ by a factor of 10 or some such significant factor. Then
go to (1) and try an update again.

4. If the error has decreased as a result of the update, then accept the step (i.e. keep the weights
at their new values) and decrease λ by a factor of 10 or so.

The above algorithm has the disadvantage that if the value of λ is large, the calculated Hessian
matrix is not used at all. We can derive some advantage out of the second derivative even in such
cases by scaling each component of the gradient according to the curvature. This should result in
larger movement along the directions where the gradient is smaller so that the classic “error valley”
problem does not occur any more. This crucial insight was provided by Marquardt. He replaced
the identity matrix in (7) with the diagonal of the Hessian resulting in the Levenberg-Marquardt
update rule.

xi+1 = xi − (H +λdiag [H])−1 ∇ f (xi) (8)

Since the Hessian is proportional to the curvature of f , (8) implies a large step in the direction with
low curvature (i.e., an almost flat terrain) and a small step in the direction with high curvature (i.e,
a steep incline).

It is to be noted that while the LM method is in no way optimal but is just a heuristic, it works
extremely well in practice. The only flaw is its need for matrix inversion as part of the update. Even
though the inverse is usually implemented using clever pseudo-inverse methods such as singular
value decomposition, the cost of the update becomes prohibitive after the model size increases to
a few thousand parameters. For moderately sized models (of a few hundred parameters) however,
this method is much faster than say, vanilla gradient descent.

3



4 LM as a trust-region algorithm

Historically, the LM algorithm was presented by Marquardt as given in the previous section where
the parameter, λ , was manipulated directly to find the minimum. Subsequently, a trust-region
approach to the algorithm has gained ground.

Trust-region algorithms work in a fundamentally different manner than those presented in the
previous section, which are called line-search methods. In a line search method, we decide on a
direction in which to descend the gradient and are then concerned about the step size, i.e. if p(k)

is the direction of descent, and αk the stepsize, then our step is given by x(k+1) = x(k) +αk p(k) and
the stepsize is obtained by solving the sub-problem

min f
(

x(k) +αk p(k)
)

∀αk > 0

By contrast, in a trust-region algorithm we build a model m(k) that approximates the function f
in a finite region near x(k). This region, ∆, where the model is a good approximation of f , is called
the trust-region. Trust-region algorithms maintain ∆ and update it at each iteration using heuristics.
The model m(k) is most often a quadratic obtained by a Taylor series expansion of f around x(k),
i.e.

m(k) = f
(

x(k)
)

+∇ f
(

x(k)
)

� p+
1
2

pT H p (9)

where H is the Hessian (or an approximation of the Hessian) matrix. The sub-problem to be solved
to find the step to take during the iteration is

min‖p‖≤∆ f
(

x(k)
)

+∇ f
(

x(k)
)

� p+
1
2

pT H p (10)

and the iteration step itself is x(k+1) = x(k) + p. A trust-region algorithm can thus be conceived of
as a sequence of iterations, in each of which we model the function f by a quadratic and then jump
to the minimum of that quadratic.

The solution of (10) is given by a theorem which is as follows -

p∗ is a global solution of min‖p‖<∆ f
(

x(k)
)

+∇ f
(

x(k)
)

� p+ 1
2 pT H p iff

‖ p∗ ‖≤ ∆ and there is a scalar λ s.t. :

(H +λ I) p∗ = −g (11)

λ (∆− p∗) = 0 (12)

and (H +λ I) is positive semi-definite

where g, f ∈ ℜn.

It can be seen that (11) is the same as (7). (12) basically states that if ‖ p∗ ‖< ∆ then λ is 0 but
not otherwise. Hence, we reach the same parameter update equation for the LM algorithm using a
trust-region framework as we obtained using the line-search method

The heuristic to update the size of the trust-region usually depends on the ratio of the expected
change in f to the predicted change, i.e.

4



ρk =
f
(

w(k)
)

− f
(

w(k) + p∗
)

f
(

w(k)
)

−m(k) (p∗)
(13)

If there is a good agreement between predicted and actual values (ρk ≈ 1), then ∆ is increased; if
the agreement is poor (ρk is small), then ρk is decreased. If ρk is smaller than a threshold value
(∼ 10−4), the step is rejected and the value of wk is retained but ∆ is decreased as before. Thus,
the algorithm is similar to the one in Section 3 but the value that is changed with each iteration is
∆ and not λ .

References

[Levenberg44] K. Levenberg, “A method for the solution of certain problems in least squares,
Quart. Appl. Math., 1944, Vol. 2, pp. 164–168.

[Marquardt63] D. Marquardt, “An algorithm for least-squares estimation of nonlinear parameters,”
SIAM J. Appl. Math., 1963, Vol. 11, pp. 431–441.

[Nocedal99] J. Nocedal and S.J. Wright, “Numerical Optimization,” Springer, New York, 1999.

5


